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Abstract—The characteristics of electromagnetic waves propa-
gating in a semiconductor filled rectangular waveguide in the pres-
ence of a transverse magnetic field are studied. It is shown that only
TE mode waves having y-independent field components (y being the
direction of the steady magnetic field) and anomalous modes having
all six field components can propagate. The propagation constant of
waves characterized by a sinusoidal y dependence of fields is derived.
Asymptotic expressions for the fields and the propagation constant
are then obtained for the limiting case of a small external magnetic
field and some recent experimental results are analyzed in this con-
text.

I. INTRODUCTION

N LECTROMAGNETIC wave propagation in rec-
I tangular waveguides filled with magnetized fer-
rites have been extensively studied and are well
discussed in the literature [1]. The permeability of mag-
netized ferrites being a tensor quantity, the modes of
propagation are found to have features which are quite
distinct from those found in the case of isotropic media.
In addition to the TE modes, new types of modes like
ferrite-guided and anomalous gyromagnetic modes are
found to be possible.

The complex permittivity of a semiconductor in the
presence of a magnetic field is also a tensor quantity.
When a steadv magnetic field is applied to a semicon-
ductor-filled waveguide carrying electromagnetic waves,
the electric fields perpendicular to the applied magnetic
field become coupled. Hence, the characteristics of the
waveguide modes are changed, as in the analogous case
of magnetized ferrites where the microwave magnetic
fields perpendicular to the steady magnetization are
coupled. But, since the electric and magnetic fields are
required to satisfy different conditions at the boundaries
of the waveguide, the exact characteristics of the modes
are likely to be different in the two cases. In recent
vears several workers [2]-[6] have studied experi-
mentally the effect of a steady magnetic field on the
propagation of electromagnetic waves in semiconductor
filled waveguides. It is, therefore, of interest to examine
the characteristics of the modes which are possible under
these conditions. An analysis for rectangular wave-
guides and transverse magnetic fields has been made by
Hirota [7] assuming that the conductivity of the semi-
conductor in a direction parallel to the magnetic field is
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very high, and, hence, that the electric field in this di-
rection is equal to zero. In the present paper the same
problem is studied, but the diagonal elements of the
complex permittivity tensor are assumed to be equal.
The method of analysis presented here is, however, ap-
plicable even if this assumption is not valid, but the
algebraic manipulations in this case become very com-
plicated.

In Section II, the characteristics of the modes are
generally examined by considering Maxwell’s equations
and the boundary conditions. It is shown that in the
present case no TM modes or TE modes other than
those of the type TE,; may be excited. In addition,
anomalous mode waves having all the six field com-
ponents are also possible. In Section I1I, the nature of
propagation of the modes having a sinusoidal field in-
tensity variation in the direction of the magnetic field
are studied. It is found that the propagation charac-
teristics are, in general, reciprocal. When the applied
magnetic field is not too large, one may assume that
the diagonal terms of the complex permittivity tensor
are equal. Complete field solutions are given for this
case in Section I11. Section IV is devoted to the con-
sideration of the solution for small magnetic fields,
such that the off-diagonal elements of the permittivity
tensor can be treated as small perturbations. By making
asymptotic approximations, the general nature of the
field distributions are illustrated. These results are dis-
cussed in relation to some recent experiments in Sec-
tion V.

II. GENERAL CONSIDERATIONS

A rectangular waveguide as shown in Fig. 1 is as-
sumed to be completely filled with a semiconductor. In
the presence of an electromagnetic wave in the guide a
dielectric and also a conduction current flow in the
semiconductor. The dielectric current J; is given by

oE
Ja = EE“ (1)

where € is the permittivity of the semiconductor and
E is the electric field vector. It has been suggested [8]
that the dielectric current may be changed when a
magnetic field is applied. However, this effect has not
been experimentally observed, and even if it exists it
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Fig. 1. Basic guide configuration.

would be small. It is assumed, therefore, that the dielec-
tric current is unaffected by the magnetic field.

The conduction current in the absence of a magnetic
field is

J. = oE. v

The signal frequency is assumed to be much less than
the scattering frequency and, hence, ¢ is equal to the
dc conductivity of the semiconductor. When a magnetic
field is applied, the conduction current is modified due
to the Hall effect. The Hall effect produces a field which
is opposite to the microwave electric field [9]. In the

case of a semiconductor with spherical energy surfaces
the Hall field Eg is

Ey = R.By X J. 3)

where R.is the Hall coefficient and By is the steady mag-
netic field (assumed to be applied in the positive y direc-
tion). Hence, the modified conduction current is

Jen = o(E — Ep). 4

Now, assuming the time dependence of the electro-
magnetic fields to be ¢2+¢, (1), (3), and (4) may be com-
bined and the total current J, written as

oE

J=Ji+ Jen = [E] _é? (5)

where [e], the complex permittivity tensor, is given by

e2 0 e
[E] = 0 €2 0 (6&)
—e 0 e
and
| - )
e =¢| 1 —
we{ 1+ (RGB(](T)Z}
€ = € |:1 - E}
e
JRcBoc*
€3 = ————— (6b)

wil + (RBw)?}
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Maxwell’s equations in the case of media having a ten-
sor permittivity are

oE
VX H= [e]——
at

VX E 6H (7
Y

where u is the permeability of semiconductor.
Assuming as usual the z dependence of the field to be
e’ (I' being the propagation constant), one may ob-
tain the following pair of equations in E, and H, from
(7):
— D,[jwes(T? + wlues) + jwT' Dy(er — €) ] E.
€1 €1
+ |:w2u62 {wZ#ﬁ + I (1 + A> + D+ — sz}
€ €2

3

+ (D2 + D2+ m] H,=0 (8

€
D, [ joer {wmeg + T2+ (D2 + Dyz)} ~ jwegrpx} E,

€1
+ [wnes(w’ne + T2 4 D,2)
+ I'Dy(wues + T2+ D2+ D2)]H, =0 (9)

where D, and D, stand respectively for d/9, and 8/8,.
If we assume that E,=0 (TE modes), then (8) and
(9) reduce to

[w + 1 {D,ﬁ + D+ ohue (1 + 3)}
€1

T wlue (D,ﬂ +2pr+ wmez)ﬂ H,=0 (10)

€1
[13D, + Twlues + TDA(D.? + D,? + wlue)

+ wlues( D2 + w2,u62)]Hz =0. (11)

Equations (10) and (11) cannot be simultaneously
satisfied by the same value of T" unless D, =0 or H,=0,
even if €, =e€s. Hence, only those TE modes which have
y-independent field components can propagate in the
semiconductor filled guide in the presence of a mag-
netic field. It should, however, be noted that all these
TE.. modes which can propagate are characterized by
having only the component of electric field along the y
direction. Since the magnetic field is also applied in this
direction there is no Hall field produced, and the char-
acteristics of these modes should evidently remain un-
altered in the presence of the magnetic field.

If we assume H,=0 (TM modes) (8) and (9) reduce to

—Dy[jweg(Tz + w’ues) + jol Dy(er — 62)]Ez =0 (12)

D, [ jwer {w2p62 T+ Z(pag D;)}

€1

- jweaI‘D{l E,=0. (13)
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Equations (12) and (13) cannot be simultaneously
satisfied, even if ¢; =¢€; unless D, =0 or E,=0. However,
if D,=0, E, must vanish everywhere since it must
vanish at the boundaries. One may, hence, conclude
that in a rectangular waveguide filled with a semicon-
ductor, TM modes cannot propagate in the presence
of a transverse magnetic field.

Equations (8) and (9) may, however, be satisfied by
the same value of I if H,#0 and E,#0. Hence, in addi-
tion to the y-independent TE modes, the so-called
anomalous modes having all the six field components
would be possible.

I11. SPECIFIC SOLUTIONS ASSUMING A SINUSOIDAL
y-DEPENDENCE OF THE FIELDS

General solutions giving the field components of the
anomalous modes are rather difficult to obtain. How-
ever, one may consider that the application of the mag-
netic field across the semiconductor-filled waveguide
perturbs the modes usually possible in the guide. Hence,
though all types of TE and TM modes are not possible
there will be modes corresponding to the unperturbed
TE or TM modes. The field components of such per-
turbed modes may be obtained by using our knowledge
of the basic unperturbed modes. In this section we shall
obtain the field components of the modes correspond-
ing to the TE modes having a sinusoidal y-dependence
of fields. The method followed here is similar to that
used by Barzilai and Gerosa [10] in their analysis of
propagation in rectangular waveguides filled with
transversely magnetized ferrites.

Let @ and b be the cross-sectional dimensions, parallel
and perpendicular to the external magnetic field By,
of the waveguide. E, is assumed to have a y-dependence
of the form sin (mmy/a) where m is an integer. Com-
bining (8) and (9) and replacing D} by — (m=/a)? one
obtains

[PD;4+ QD + R|E, = 0 (14)
where

P =e

Q = 2T + wiue® + wiues?

mia?

+ wiuerer — (€1 + €2)

02

R =T + I'2 {wz,u(-:l2 + wues?

wmr®
+ wlueres — (611 €)

a?

9 9
+ {w“#“el“@ + wiulese;’

min? mir?
+ o eg—p .
a?

at

- 20)2#6162
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It may be of interest to note here that propagation
will, in general, be of a reciprocal nature. This is due to
the absence in (14) of coefficients having terms that are
functions of odd powers of T".

For values of By such that (R.B0)2<«<1, the diagonal
components of the complex permittivity tensor are all
found to be equal, i.e., ee=e. In the following analysis
this assumption is introduced for the sake of simplicity.
Under some experimental conditions the assumption
may not be justified, but one may obtain results for
these conditions by following the method of analysis
given here retaining €, and e as two different quantities.

Now, since E.#0, when ei=e¢; (14) can be shown to

reduce to
w3 €3
+ wiues —
a? €]

<D:c4 + D, [2 <w2u€1 + -

2.2\ 2
+ [(wﬂuel 4+ I — ” 7:)
2

-+ w2ueg~e~3 (r2 + w2u61)]> =0. (15)
€1

The four roots 1,2 of (15) are given by

1’I’L2’II"‘2 1 €3
Y1, = — | wlpe + I — — ol —
a? 2 €1

1 €3 2 . €3 mipdue
i - w2u63~— - 4(.0“[.!.63% 7 .
2 €1 €1 a-

Mikaelian [11] has shown that the boundary condi-
tions at x =0, x =0 cannot be satisfied by either of the
two independent birefringent modes corresponding to
the four roots ++1., but that a linear combination of
these must be used. That is,

E. = (den® 4 Bens 4 Cevs 4 D)

. mmy )
-sin e(]wH—I‘z)
a

where 4, B, C, and D are four arbitrary constants. Sub-
stitution of (17) in Maxwell’s equations gives

(16)

a7

. a €1
Py =\ ) oy
mar/ e(T? + wuer)
F€3 m27r?}

-[Ae“” {vl(a’ +0) + —
€

a? )

Te; mn?
+ Be e {—vl(a' + o) +— ——f—}

€1 a?

, , Pég ’}’}’Lz’ﬂ':2
+ Coro dyala) — ) 4 —
€

1 a’
j Tez mir?
+ Deve 4 —ys(d — b)) + — ——
\l €] a?
mry
. COoS ( )e(ju:hLI‘z) (18)
a
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and,
€ Te
E, = — ! —[Ae‘“‘( i Y1 — a + b')
e3(T? 4 wiuey) €1
F63
+ Beit| — —y1—d + 0V
€1
Pﬁg
+ CeW‘( vo— d — b'>
€
Feg
4 Deree (— — s — & — b’):\
€1
m
.sin < 7ry> e(Jot+T2) (19)
a
where
, 1 R €5
ad = — wilue—
2 whe €1

1 e3\2 €3> mia2 L2
! __ 2 i 2, .
b —~|:<w,u.63~> 4oy - ] .
2 €1 €1 a-

The boundary conditions demand that
E, =0
E, =0

atx=0,0
atx =0, b,

Implementation of the four boundary conditions re-
sults in a system of four linear homogenous equations in
A, B, C, and D. For the nontrivial case the determinant
of the coefficients of this set of equations must vanish.
On expansion this determinantal equation reduces to
the transcendental equation

2v1ye(a’? — B'2)(1 — cosh vib cosh vsb)

= — {y2(d 4+ )2+ v52(a’ — ¥)?} sinh y;b sinh y56. (20)
The solution of (20) yvields the required value of the
propagation constant I'. The coefficients B, C, and D

may now be evaluated in terms of 4. On evaluation one
obtains

2v1e"® — (y1+ ) + (v2 — y)e v

B=4 21
A (21)
— s _|_ + e — D20
Co 4 (ve — v1) (v2 +v0) 72 (22)
A
—_ ._I_ Y16 — — —y1b + 2 2 v2b
D=4 (v1 Ya)e €7 Yi)e 844 (23)
A
where
A= — 2y + (y1 — v2)e™ + (y2 + y)e?. (24)

The roots vi1,2 are now known quantities whose values
can be determined from (16) and (20). As the coeffi-
cients B, C, and D have been obtained in terms of 4, all
the field components can be expressed in terms of the
excitation represented by 4. Since these expressions are
rather involved, and since solutions of (20) may be ob-
tained only numerically, it is difficult to examine the
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characteristics of the field distribution in the general
case.

However, it may be noted that if By be small, ¢; is a
small quantity and the expressions for the fields may
be simplified. The propagation characteristics for the
waveguide when this assumption is valid are discussed
in the following section.

IV. APPROXIMATION FOR SMALL MAGNETIC FIELD

The expression for the propagation constant derived
in the earlier section must reduce to that obtainable in
the isotropic medium case when the external magnetic
field By=0. Since in this case

min?
T? = — | wner —
a2

one finds from (16) that

(25)

Y12 =0 (26)

where T'g is the unperturbed propagation constant in
the semiconductor-filled guide in the absence of any
transverse external magnetic field.

Equation (16) may be written as

yit =80 —a + ¥ 27
where
min?
8 = — <P2 + wluer — ; ) (28)
a

If it is assumed that (y1,206)<<1 one can approximately
write

(71,20)*

sinh y1,20 = 1,20 and coshyy0 =1+

On substitution in (20) it turns out that

5T =0 (29)

(30)

It should be noted that the assumption (v:1:0)<1 is
more restrictive than the earlier assumption (R.Bgo)?
1. This may be shown by considering the value of
va'b which is the order of ;0. Putting 6=10"2 m
(frequencies in the 3 cm band) and the values of other
parameters one obtains

’)’1,22 = — d/ j: b

VTb = 27— RBw  for —<«1
V& we

VT b = 2.7\ oot RiByr  for —> 1
wWe

where € is the free space permittivity and e, the dielec-
tric constant of the semiconductor. It is, thus, seen that
the assumption (v1,20)<<1 requires that (R,Bgos) multi-
plied by a quantity greater than unity, for the usual
values of ¢, should be small in comparison to one.

It is found from (29) that for small values of By the
propagation constant is equal to its unperturbed value.
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However, the fields are not the same as those of the
isotropic case. One may write down the varying com-
ponents of the electromagnetic fields in the guide,
using the simplified expressions for B, C, and D obtained
by substituting (27) through (30) into (21) through
(24). One thus obtains

e/ a\? Tes
E,= A ——)(2——0
€3 \mm €1

Fég ]
[ —+a'b
€1
l 1+ ¥ — a'x®
Fég
L 1——b
261
.Sin <M7ry> e(]'wH‘FS)
a

Ta mry )
EU = AI I ,T(,V - b) cos | —— ) gliwi+T2)
mar a

. mmy .
E, = A’x(x — b) sin gluttT2) (31a)
@
where
.44l
- v1b

Substitution of (31a) into the second of Maxwell’s
equation (7) enables us to work out the corresponding
components of the varying magnetic field as

a m
H, = jA’wel<——> x(x — b) cos(
m

7Ty> 6(jwt+I‘z)
a
jA' a 2 €1
a, =2 () | or 2 - wtae — b)
wp \ M €
.sin <m7ry> eGwt+T2)
a

s A7
g = -3t j{(i) (@) JUrtiT).
Wi €3 \ T a

Equations (31a) and (31b), as expected, are seen to re-
duce to those of the TE,, mode when By=0. Further-
more, (31a) and (31b) point to an asymmetric x de-
pendence of the fields. This point is further discussed
in the next section where certain experimental results
are analyzed in view of the theory developed in this
section.

(31b)

V. DiscussionN

Several experiments have been performed in recent
vears on the propagation of microwaves through semi-
conductors in the presence of external magnetic fields.
The experiments using longitudinal magnetic fields and
cylindrical structures are not relevant to the theory de-
veloped here. However, the results of the experiment of
Barlow and Koike [4] may be explained by considering
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Fig. 2. Experimental arrangement of Barlow and Koike.
the field distribution derived in Section IV. Their

arrangement using TEqn incident waves is shown in
Fig. 2. The results indicated that the structure was
nonreciprocal in nature, and that the propagation char-
acteristics for the oppositely polarized circular waves,
which are set up inside the guide as a result of B,, were
different {for opposite directions of either the magnetic
field, or the wave propagation, or the type of conduc-
tivity of the semiconductor material used.

The following are the data related to the experiment:

f=9975 Mc/s.
n-type Ge ¢ =06.25 V/m.
e=16,6=2.28cm=0.0228 m, b=1.015cm =0.01015
m.
Bo=0.3 Wb/m>.
wr =R =0.425 m2/volt (see [12]).

It is seen that with these parameter values

(R.Byo)2 = (0.3 X 0.425)* = 0.016.

This can be considered negligible in comparison with
unity, Hence, the assumption of equal diagonal elements
in the complex permittivity tensor holds good in this
case.

Our calculations indicate that though 46 or b are
less than unity, the condition (y1,:0)<<1 is not strictly
satisfied in this case. The expressions for the field given
later, therefore, involve some error. But, the qualitative
nature of the variation of the field, the subject of discus-
sion in this section, should not be altered due to these
errors.

Making appropriate calculations it is seen from (31)
that,

€1 a \? Tes
Ey= A —(—)(2——06
€3 \mm, €1
[1 — 64.9993x + 18.8309 X 10%x?
4+ 7(—20.2118x + 13.2744 X 10%?)|

by
sin () s,
a

The real and imaginary parts and also the absolute
magnitude of E, as obtained from (32) by assuming the
multiplying constant to be unity, are plotted in Fig. 3
for different values of x. It is seen that the magnitude of

(32)
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Fig. 3. Plot of real and imaginary parts, and the absolute magnitude

of E, vs. x. The straight line is the real part and absolute mag-
nitude of E,. The dotted line is the imaginary part of E,.

E; uniformly decreases with increase in x for the
assumed direction of the magnetic field. It is then evi-
dent that for the reverse direction of magnetic field the
magnitude of E, would increase with increase in x. This
is also true for the other components of the electric field.
This result provides an explanation for the nonreciprocal
nature of propagation observed in Barlow and Koike's
experiment. In this experiment a semiconductor sample
filling partially the narrow and also the broad sides of
the waveguide was used. Hence, the magnitude of the
electric field in the semiconductor is larger for one
direction of the magnetic field than for the opposite
direction. Since the attenuation is mostly introduced by
the semiconductor sample, evidently it would be larger
for that direction of the magnetic field for which the
magnitude of the electric field in the sample is larger. It
is also evident that since the electric field is maximum
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at y=a/2, this nonreciprocal effect would be more
prominent when the sample is placed at the centre of
the broad dimension. It should however be noted that
this explanation is only qualitative in character, and a
quantitative analysis of the problem would involve
matching of the fields at the various free-space semicon-
ductor interfaces.

VI. CONCLUSIONS

It has been shown that in a semiconductor-filled
rectangular waveguide pure TM and TE mode waves
except the TE,, types cannot propagate in the presence
of a transverse magnetic field. Anomalous modes having
all the six field components are, however, possible. Propa-
gation is, in general, reciprocal. The field patterns of the
anomalous mode corresponding to the TEq mode in the
isotropic medium filled guide, are found to be asym-
metrically distorted. This asymmetric distortion pro-

vides an explanation for the nonreciprocal propagation
observed by Barlow and Koike [4].
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